Bifidobacteria Upregulate Expression of Toll-Like Receptor Negative Regulators Counteracting Enterotoxigenic Escherichia coli Mediated Inflammation in Bovine Intestinal Epitheliocytes

نویسندگان

  • Kozue Murata
  • Julio Villena
  • Yohsuke Tomosada
  • Risa Hara
  • Eriko Chiba
  • Tomoyuki Shimazu
  • Hisashi Aso
  • Yoshihito Suda
  • Noriyuki Iwabuchi
  • Jin-Zhong Xiao
  • Tadao Saito
  • Haruki Kitazawa
چکیده

We previously established a bovine intestinal epithelial cell line (BIE cells) and showed that BIE cells are useful in vitro model system for the study of interactions between pathogenic and beneficial microorganisms and bovine intestinal epithelial cells (IECs). In the present study, we aimed to select potential immunomodulatory bifidobacteria that may be used to beneficially modulate the inflammatory response in bovine IECs. We also aimed to gain insight into the molecular mechanisms involved in the anti-inflammatory effect of bifidobacteria by evaluating the role of Toll-like receptor (TLR)-2 and TLR negative regulators in the regulation of proinflammatory cytokines production and MAPK, NF-κB and PI3K pathways activation in BIE cells. Five bifidobacteria strains were evaluated in this study and according to their capacity to modulate the inflammatory response of BIE cells. Despite the unique effect of each strain, four common points were found when comparing the effect of the high and moderate anti-inflammatory strains: 1) Upregulation of TLR negative regulators and the intensity of that upregulation was related to the different immunomodulatory capacity of each bifidobacteria strain; 2) The balance between MAPK activation and MKP-1 upregulation affected the anti-inflammatory effect of bifidobacteria in BIE cells; 3) The inhibition of PI3K pathway was related to the anti-inflammatory effect of bifidobacteria; 4) The immunoregulatory effect of bifidobacteria in BIE cells is partially dependent on TLR2. This study shows that BIE cells can be used for the selection of immunoregulatory bifidobacteria and for studying the mechanisms involved in the protective activity of immunobiotics against TLR4-induced inflammatory damage. In addition, we have demonstrated that the anti-inflammatory effect of bifidobacteria was achieved by a complex interaction of multiple TLRs negative regulators as well as the inhibition/activation of multiple signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Toll-Like Receptors-Mediated Inflammation by Immunobiotics in Bovine Intestinal Epitheliocytes: Role of Signaling Pathways and Negative Regulators

Intestinal epithelial cells (IECs) detect bacterial and viral associated molecular patterns via germline-encoded pattern-recognition receptors (PRRs) and are responsible for maintaining immune tolerance to the communities of resident commensal bacteria while being also capable to mount immune responses against pathogens. Toll-like receptors (TLRs) are a major class of PRRs expressed on IECs and...

متن کامل

Lactobacillus amylovorus Inhibits the TLR4 Inflammatory Signaling Triggered by Enterotoxigenic Escherichia coli via Modulation of the Negative Regulators and Involvement of TLR2 in Intestinal Caco-2 Cells and Pig Explants

Inflammation derived from pathogen infection involves the activation of toll-like receptor (TLR) signaling. Despite the established immunomodulatory activities of probiotics, studies relating the ability of such bacteria to inhibit the TLR signaling pathways are limited or controversial. In a previous study we showed that Lactobacillus amylovorus DSM 16698T, a novel lactobacillus isolated from ...

متن کامل

Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88.

Probiotic bacteria may provide protection against intestinal damage induced by pathogens, but the underlying mechanisms are still largely unknown. We investigated whether Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG (LGG) protected intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli (ETEC) K88, by inhibiting pathogen attac...

متن کامل

The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation.

BACKGROUND A major cause of enteric infection, Gram-negative pathogenic bacteria activate mucosal inflammation through lipopolysaccharide (LPS) binding to intestinal toll-like receptor 4 (TLR4). Breast feeding lowers risk of disease, and human milk modulates inflammation. OBJECTIVE This study tested whether human milk oligosaccharides (HMOSs) influence pathogenic Escherichia coli-induced inte...

متن کامل

Enterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice

Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013